Package: clr 0.1.2.9000

clr: Curve Linear Regression via Dimension Reduction

A new methodology for linear regression with both curve response and curve regressors, which is described in Cho, Goude, Brossat and Yao (2013) <doi:10.1080/01621459.2012.722900> and (2015) <doi:10.1007/978-3-319-18732-7_3>. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.

Authors:Amandine Pierrot with contributions and/or help from Qiwei Yao, Haeran Cho, Yannig Goude and Tony Aldon.

clr_0.1.2.9000.tar.gz
clr_0.1.2.9000.zip(r-4.5)clr_0.1.2.9000.zip(r-4.4)clr_0.1.2.9000.zip(r-4.3)
clr_0.1.2.9000.tgz(r-4.4-any)clr_0.1.2.9000.tgz(r-4.3-any)
clr_0.1.2.9000.tar.gz(r-4.5-noble)clr_0.1.2.9000.tar.gz(r-4.4-noble)
clr_0.1.2.9000.tgz(r-4.4-emscripten)clr_0.1.2.9000.tgz(r-4.3-emscripten)
clr.pdf |clr.html
clr/json (API)
NEWS

# Install 'clr' in R:
install.packages('clr', repos = c('https://apierrot.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/apierrot/clr/issues

Datasets:
  • clust_test - Electricity load example: clusters on test set
  • clust_train - Electricity load example: clusters on train set
  • gb_load - Electricity load from Great Britain

On CRAN:

3.26 score 18 scripts 200 downloads 2 mentions 2 exports 19 dependencies

Last updated 5 years agofrom:dc5d74a5a0. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winNOTENov 21 2024
R-4.5-linuxNOTENov 21 2024
R-4.4-winNOTENov 21 2024
R-4.4-macNOTENov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:clrclrdata

Dependencies:clicpp11dplyrfansigenericsgluelifecyclelubridatemagrittrpillarpkgconfigR6rlangtibbletidyselecttimechangeutf8vctrswithr